cs.AI updates on arXiv.org 10月21日 12:20
ADAROUND方法改进密集神经网络量化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于ADAROUND的QUBO公式的后训练量化(PTQ)方法,利用Frobenius距离作为目标函数,通过结构化系数QUBO矩阵分解,实现高效求解。在MNIST等数据集上进行了实验,结果表明该方法优于传统量化方法。

arXiv:2510.16075v1 Announce Type: cross Abstract: This work introduces a post-training quantization (PTQ) method for dense neural networks via a novel ADAROUND-based QUBO formulation. Using the Frobenius distance between the theoretical output and the dequantized output (before the activation function) as the objective, an explicit QUBO whose binary variables represent the rounding choice for each weight and bias is obtained. Additionally, by exploiting the structure of the coefficient QUBO matrix, the global problem can be exactly decomposed into $n$ independent subproblems of size $f+1$, which can be efficiently solved using some heuristics such as simulated annealing. The approach is evaluated on MNIST, Fashion-MNIST, EMNIST, and CIFAR-10 across integer precisions from int8 to int1 and compared with a round-to-nearest traditional quantization methodology.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

后训练量化 ADAROUND方法 QUBO公式 神经网络量化 密集神经网络
相关文章