cs.AI updates on arXiv.org 10月21日 12:19
图像分类中的交叉公平性评估框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种分析并缓解图像分类模型中交叉偏见的框架,引入了交叉公平性评估框架(IFEF),并提出了基于子群体分布统计的偏置加权增强(BWA)策略,在Open Images V7数据集上提升了低代表类别交叉的准确率。

arXiv:2510.16072v1 Announce Type: cross Abstract: Machine learning models trained on imbalanced datasets often exhibit intersectional biases-systematic errors arising from the interaction of multiple attributes such as object class and environmental conditions. This paper presents a data-driven framework for analyzing and mitigating such biases in image classification. We introduce the Intersectional Fairness Evaluation Framework (IFEF), which combines quantitative fairness metrics with interpretability tools to systematically identify bias patterns in model predictions. Building on this analysis, we propose Bias-Weighted Augmentation (BWA), a novel data augmentation strategy that adapts transformation intensities based on subgroup distribution statistics. Experiments on the Open Images V7 dataset with five object classes demonstrate that BWA improves accuracy for underrepresented class-environment intersections by up to 24 percentage points while reducing fairness metric disparities by 35%. Statistical analysis across multiple independent runs confirms the significance of improvements (p < 0.05). Our methodology provides a replicable approach for analyzing and addressing intersectional biases in image classification systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像分类 交叉公平性 数据增强 偏差缓解
相关文章