cs.AI updates on arXiv.org 10月21日 12:19
FedPURIN:高效通信的个性化联邦学习框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FedPURIN,一种基于整数规划的个性化联邦学习框架,通过稀疏聚合显著降低通信量,在保持模型性能的同时,提高通信效率,特别适用于异构数据源的边缘智能系统。

arXiv:2510.16065v1 Announce Type: cross Abstract: Personalized Federated Learning (PFL) has emerged as a critical research frontier addressing data heterogeneity issue across distributed clients. Novel model architectures and collaboration mechanisms are engineered to accommodate statistical disparities while producing client-specific models. Parameter decoupling represents a promising paradigm for maintaining model performance in PFL frameworks. However, the communication efficiency of many existing methods remains suboptimal, sustaining substantial communication burdens that impede practical deployment. To bridge this gap, we propose Federated Learning with Programmed Update and Reduced INformation (FedPURIN), a novel framework that strategically identifies critical parameters for transmission through an integer programming formulation. This mathematically grounded strategy is seamlessly integrated into a sparse aggregation scheme, achieving a significant communication reduction while preserving the efficacy. Comprehensive evaluations on standard image classification benchmarks under varied non-IID conditions demonstrate competitive performance relative to state-of-the-art methods, coupled with quantifiable communication reduction through sparse aggregation. The framework establishes a new paradigm for communication-efficient PFL, particularly advantageous for edge intelligence systems operating with heterogeneous data sources.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

个性化联邦学习 通信效率 稀疏聚合 边缘智能系统 整数规划
相关文章