cs.AI updates on arXiv.org 10月21日 12:19
残差学习优化非线性AC最优潮流
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于残差学习的非线性AC最优潮流方法,利用快速直流最优潮流作为基线,学习非线性修正,提高计算效率,并通过物理信息损失函数确保潮流可行性。实验证明,该方法在准确性、可行性和速度上均有显著提升。

arXiv:2510.16064v1 Announce Type: cross Abstract: Solving the nonlinear AC optimal power flow (AC OPF) problem remains a major computational bottleneck for real-time grid operations. In this paper, we propose a residual learning paradigm that uses fast DC optimal power flow (DC OPF) solutions as a baseline, and learns only the nonlinear corrections required to provide the full AC-OPF solution. The method utilizes a topology-aware Graph Neural Network with local attention and two-level DC feature integration, trained using a physics-informed loss that enforces AC power-flow feasibility and operational limits. Evaluations on OPFData for 57-, 118-, and 2000-bus systems show around 25% lower MSE, up to 3X reduction in feasibility error, and up to 13X runtime speedup compared to conventional AC OPF solvers. The model maintains accuracy under N-1 contingencies and scales efficiently to large networks. These results demonstrate that residual learning is a practical and scalable bridge between linear approximations and AC-feasible OPF, enabling near real-time operational decision making.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

残差学习 非线性AC最优潮流 物理信息损失函数 计算效率 潮流可行性
相关文章