cs.AI updates on arXiv.org 10月21日 12:17
脑启发生成网格型代码量化方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为GCQ的脑启发生成网格型代码量化方法,用于将观察动作序列压缩为离散表示。该方法通过动作条件化的码本,结合连续吸引子神经网络,实现时空压缩,支持长期预测、目标导向规划和逆向建模。

arXiv:2510.16039v1 Announce Type: cross Abstract: We propose Grid-like Code Quantization (GCQ), a brain-inspired method for compressing observation-action sequences into discrete representations using grid-like patterns in attractor dynamics. Unlike conventional vector quantization approaches that operate on static inputs, GCQ performs spatiotemporal compression through an action-conditioned codebook, where codewords are derived from continuous attractor neural networks and dynamically selected based on actions. This enables GCQ to jointly compress space and time, serving as a unified world model. The resulting representation supports long-horizon prediction, goal-directed planning, and inverse modeling. Experiments across diverse tasks demonstrate GCQ's effectiveness in compact encoding and downstream performance. Our work offers both a computational tool for efficient sequence modeling and a theoretical perspective on the formation of grid-like codes in neural systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

网格型代码量化 GCQ 吸引子神经网络 时空压缩 序列建模
相关文章