cs.AI updates on arXiv.org 前天 12:17
PINNs训练动态优化:ANaGRAM与多截止策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了PINNs训练中ANaGRAM方法的应用,提出多截止策略以提升性能,并通过基准PDE实验验证了方法的有效性。

arXiv:2510.15998v1 Announce Type: cross Abstract: Recent works have shown that natural gradient methods can significantly outperform standard optimizers when training physics-informed neural networks (PINNs). In this paper, we analyze the training dynamics of PINNs optimized with ANaGRAM, a natural-gradient-inspired approach employing singular value decomposition with cutoff regularization. Building on this analysis, we propose a multi-cutoff adaptation strategy that further enhances ANaGRAM's performance. Experiments on benchmark PDEs validate the effectiveness of our method, which allows to reach machine precision on some experiments. To provide theoretical grounding, we develop a framework based on spectral theory that explains the necessity of regularization and extend previous shown connections with Green's functions theory.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PINNs ANaGRAM 自然梯度 PDE 优化
相关文章