cs.AI updates on arXiv.org 10月21日 12:16
GRPO算法提升LLM推理能力研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于GRPO算法的强化学习在大型语言模型推理能力提升中的应用,分析了其优缺点和适用条件,并提出了未来算法发展方向。

arXiv:2510.15990v1 Announce Type: cross Abstract: Reinforcement Learning with Verifiable Rewards (RLVR), primarily driven by the Group Relative Policy Optimization (GRPO) algorithm, is a leading approach for enhancing the reasoning abilities of Large Language Models (LLMs). Despite its wide adoption, GRPO's gains are often inconsistent; for instance, a model may show significant improvement in one reasoning domain, like mathematics, yet remain stagnant in another, such as medicine. This inconsistency raises a critical question: under what conditions does GRPO improve reasoning and generalize out-of-distribution (OOD)? We investigate this from a data distribution perspective. We first prove theoretically that GRPO is a conservative reweighting scheme, bounded by the base model's distribution and thus unable to discover completely novel solutions. We further validate this in carefully designed controlled studies by training transformers from scratch, evaluating generalization across reasoning depth, input length, token representation, and compositionality. Our results provide a principled explanation for GRPO's boundaries: OOD improvement emerges only when the target task aligns with the model's pretrained biases, while gains on in-distribution (ID) tasks diminish as performance saturates. This reframes GRPO not as a universal reasoning enhancer but as a tool that sharpens pretraining biases. Our findings motivate future development of algorithms that can expand a model's capabilities beyond its pretraining origin.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GRPO算法 LLM推理能力 强化学习 数据分布 模型能力
相关文章