cs.AI updates on arXiv.org 10月21日 12:15
LLM水印技术新突破:LTW框架提升文本质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为LTW的新型选择性水印框架,通过多目标优化在文本质量和水印检测度之间取得平衡。LTW通过分析句子嵌入、标记熵和当前水印率,自适应地决定何时应用水印。实验结果表明,LTW显著提高了文本质量,同时保持了水印的检测度。

arXiv:2510.15976v1 Announce Type: cross Abstract: The rapid development of LLMs has raised concerns about their potential misuse, leading to various watermarking schemes that typically offer high detectability. However, existing watermarking techniques often face trade-off between watermark detectability and generated text quality. In this paper, we introduce Learning to Watermark (LTW), a novel selective watermarking framework that leverages multi-objective optimization to effectively balance these competing goals. LTW features a lightweight network that adaptively decides when to apply the watermark by analyzing sentence embeddings, token entropy, and current watermarking ratio. Training of the network involves two specifically constructed loss functions that guide the model toward Pareto-optimal solutions, thereby harmonizing watermark detectability and text quality. By integrating LTW with two baseline watermarking methods, our experimental evaluations demonstrate that LTW significantly enhances text quality without compromising detectability. Our selective watermarking approach offers a new perspective for designing watermarks for LLMs and a way to preserve high text quality for watermarks. The code is publicly available at: https://github.com/fattyray/learning-to-watermark

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM水印技术 文本质量提升 LTW框架 多目标优化 水印检测度
相关文章