cs.AI updates on arXiv.org 10月21日 12:15
LLMs安全评估:多模型攻击与防御研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对四种大型语言模型进行系统安全评估,分析了多种攻击向量,并发现不同模型在不同攻击下的安全风险差异,为模型安全防御提供参考。

arXiv:2510.15973v1 Announce Type: cross Abstract: This paper presents a systematic security assessment of four prominent Large Language Models (LLMs) against diverse adversarial attack vectors. We evaluate Phi-2, Llama-2-7B-Chat, GPT-3.5-Turbo, and GPT-4 across four distinct attack categories: human-written prompts, AutoDAN, Greedy Coordinate Gradient (GCG), and Tree-of-Attacks-with-pruning (TAP). Our comprehensive evaluation employs 1,200 carefully stratified prompts from the SALAD-Bench dataset, spanning six harm categories. Results demonstrate significant variations in model robustness, with Llama-2 achieving the highest overall security (3.4% average attack success rate) while Phi-2 exhibits the greatest vulnerability (7.0% average attack success rate). We identify critical transferability patterns where GCG and TAP attacks, though ineffective against their target model (Llama-2), achieve substantially higher success rates when transferred to other models (up to 17% for GPT-4). Statistical analysis using Friedman tests reveals significant differences in vulnerability across harm categories ($p < 0.001$), with malicious use prompts showing the highest attack success rates (10.71% average). Our findings contribute to understanding cross-model security vulnerabilities and provide actionable insights for developing targeted defense mechanisms

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs安全评估 对抗攻击 模型防御 大型语言模型
相关文章