cs.AI updates on arXiv.org 10月21日 12:15
量子自然语言处理在NLI任务中的性能表现
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了量子自然语言处理(QNLP)在自然语言推理(NLI)任务中的应用,通过实验比较了量子、混合和经典模型,展示了量子模型在低资源、结构敏感场景下的优势。

arXiv:2510.15972v1 Announce Type: cross Abstract: Quantum natural language processing (QNLP) offers a novel approach to semantic modeling by embedding compositional structure directly into quantum circuits. This paper investigates the application of QNLP models to the task of Natural Language Inference (NLI), comparing quantum, hybrid, and classical transformer-based models under a constrained few-shot setting. Using the lambeq library and the DisCoCat framework, we construct parameterized quantum circuits for sentence pairs and train them for both semantic relatedness and inference classification. To assess efficiency, we introduce a novel information-theoretic metric, Information Gain per Parameter (IGPP), which quantifies learning dynamics independent of model size. Our results demonstrate that quantum models achieve performance comparable to classical baselines while operating with dramatically fewer parameters. The Quantum-based models outperform randomly initialized transformers in inference and achieve lower test error on relatedness tasks. Moreover, quantum models exhibit significantly higher per-parameter learning efficiency (up to five orders of magnitude more than classical counterparts), highlighting the promise of QNLP in low-resource, structure-sensitive settings. To address circuit-level isolation and promote parameter sharing, we also propose a novel cluster-based architecture that improves generalization by tying gate parameters to learned word clusters rather than individual tokens.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子自然语言处理 自然语言推理 NLI 性能比较 低资源场景
相关文章