cs.AI updates on arXiv.org 10月21日 12:15
数据几何结构对AI模型影响研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了数据几何结构对机器学习与人工智能模型性能的影响,提出利用持久同伦提取数据拓扑特征,为量化数据多样性提供新方法,强调持久同伦在提升训练数据质量中的作用。

arXiv:2510.15970v1 Announce Type: cross Abstract: High-quality training data is the foundation of machine learning and artificial intelligence, shaping how models learn and perform. Although much is known about what types of data are effective for training, the impact of the data's geometric structure on model performance remains largely underexplored. We propose that both the richness of representation and the elimination of redundancy within training data critically influence learning outcomes. To investigate this, we employ persistent homology to extract topological features from data within a metric space, thereby offering a principled way to quantify diversity beyond entropy-based measures. Our findings highlight persistent homology as a powerful tool for analyzing and enhancing the training data that drives AI systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据结构 机器学习 拓扑特征 持久同伦 AI模型
相关文章