cs.AI updates on arXiv.org 10月21日 12:15
线性化LLM:非线性优化问题求解新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于大型语言模型(LLM)的线性化框架——LinearizeLLM,通过将非线性问题分配给特定代理来解决非线性优化问题,并通过实际案例验证了其有效性和自动化潜力。

arXiv:2510.15969v1 Announce Type: cross Abstract: Reformulating nonlinear optimization problems is largely manual and expertise-intensive, yet it remains essential for solving such problems with linear optimization solvers or applying special-purpose algorithms. We introduce \textit{LinearizeLLM}, an agent-based framework that solves this task by leveraging Large Language Models (LLMs). The framework assigns each nonlinear pattern to a \textit{reformulation agent} that is explicitly instructed to derive an exact linear reformulation for its nonlinearity pattern, for instance, absolute-value terms or bilinear products of decision variables. The agents then coordinate to assemble a solver-ready linear model equivalent to the original problem. To benchmark the approach, we create a dataset of 20 real-world nonlinear optimization problems derived from the established ComplexOR dataset of linear optimization problems. We evaluate our approach with several LLMs. Our results indicate that specialized LLM agents can automate linearization tasks, opening a path toward fully conversational modeling pipelines for nonlinear optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

非线性优化 大型语言模型 线性化
相关文章