cs.AI updates on arXiv.org 10月21日 12:15
SAU-FNO:3D IC热管理高效新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种结合自注意力、U-Net与FNO的SAU-FNO框架,用于3D IC热管理,通过迁移学习优化低精度数据,提高预测精度,显著提升传统FEM方法的效率。

arXiv:2510.15968v1 Announce Type: cross Abstract: Thermal management in 3D ICs is increasingly challenging due to higher power densities. Traditional PDE-solving-based methods, while accurate, are too slow for iterative design. Machine learning approaches like FNO provide faster alternatives but suffer from high-frequency information loss and high-fidelity data dependency. We introduce Self-Attention U-Net Fourier Neural Operator (SAU-FNO), a novel framework combining self-attention and U-Net with FNO to capture long-range dependencies and model local high-frequency features effectively. Transfer learning is employed to fine-tune low-fidelity data, minimizing the need for extensive high-fidelity datasets and speeding up training. Experiments demonstrate that SAU-FNO achieves state-of-the-art thermal prediction accuracy and provides an 842x speedup over traditional FEM methods, making it an efficient tool for advanced 3D IC thermal simulations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D IC 热管理 机器学习 自注意力 U-Net
相关文章