cs.AI updates on arXiv.org 10月21日 12:14
ESCA框架:基于结构时空理解的MLLMs新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ESCA框架,通过结构时空理解来定位和生成场景图,显著降低感知错误,提升多模态大语言模型性能。

arXiv:2510.15963v1 Announce Type: cross Abstract: Multi-modal large language models (MLLMs) are making rapid progress toward general-purpose embodied agents. However, current training pipelines primarily rely on high-level vision-sound-text pairs and lack fine-grained, structured alignment between pixel-level visual content and textual semantics. To overcome this challenge, we propose ESCA, a new framework for contextualizing embodied agents through structured spatial-temporal understanding. At its core is SGClip, a novel CLIP-based, open-domain, and promptable model for generating scene graphs. SGClip is trained on 87K+ open-domain videos via a neurosymbolic learning pipeline, which harnesses model-driven self-supervision from video-caption pairs and structured reasoning, thereby eliminating the need for human-labeled scene graph annotations. We demonstrate that SGClip supports both prompt-based inference and task-specific fine-tuning, excelling in scene graph generation and action localization benchmarks. ESCA with SGClip consistently improves both open-source and commercial MLLMs, achieving state-of-the-art performance across two embodied environments. Notably, it significantly reduces agent perception errors and enables open-source models to surpass proprietary baselines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态大语言模型 结构时空理解 场景图生成
相关文章