cs.AI updates on arXiv.org 10月21日 12:11
GraphVista:提升图理解的扩展性与模态协调
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GraphVista,一种统一框架,旨在解决图理解中的可扩展性和模态协调问题。通过组织图信息、引入规划代理等策略,GraphVista在大型图上实现扩展,并显著提升模态协同效果。

arXiv:2510.16769v1 Announce Type: new Abstract: Vision-language models (VLMs) have shown promise in graph understanding, but remain limited by input-token constraints, facing scalability bottlenecks and lacking effective mechanisms to coordinate textual and visual modalities. To address these challenges, we propose GraphVista, a unified framework that enhances both scalability and modality coordination in graph understanding. For scalability, GraphVista organizes graph information hierarchically into a lightweight GraphRAG base, which retrieves only task-relevant textual descriptions and high-resolution visual subgraphs, compressing redundant context while preserving key reasoning elements. For modality coordination, GraphVista introduces a planning agent that routes tasks to the most suitable modality-using the text modality for simple property reasoning and the visual modality for local and structurally complex reasoning grounded in explicit topology. Extensive experiments demonstrate that GraphVista scales to large graphs, up to $200\times$ larger than those used in existing benchmarks, and consistently outperforms existing textual, visual, and fusion-based methods, achieving up to $4.4\times$ quality improvement over the state-of-the-art baselines by fully exploiting the complementary strengths of both modalities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GraphVista 图理解 模态协调 可扩展性 大规模图
相关文章