cs.AI updates on arXiv.org 10月21日 12:10
UKG完成新方法:ssCDL
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的半监督UKG完成方法ssCDL,通过将每个三元组的置信度转换为置信度分布,增强嵌入学习过程,有效解决三元组置信度分布不均衡问题,实验证明该方法在UKG数据集上优于现有方法。

arXiv:2510.16601v1 Announce Type: new Abstract: Uncertain knowledge graphs (UKGs) associate each triple with a confidence score to provide more precise knowledge representations. Recently, since real-world UKGs suffer from the incompleteness, uncertain knowledge graph (UKG) completion attracts more attention, aiming to complete missing triples and confidences. Current studies attempt to learn UKG embeddings to solve this problem, but they neglect the extremely imbalanced distributions of triple confidences. This causes that the learnt embeddings are insufficient to high-quality UKG completion. Thus, in this paper, to address the above issue, we propose a new semi-supervised Confidence Distribution Learning (ssCDL) method for UKG completion, where each triple confidence is transformed into a confidence distribution to introduce more supervision information of different confidences to reinforce the embedding learning process. ssCDL iteratively learns UKG embedding by relational learning on labeled data (i.e., existing triples with confidences) and unlabeled data with pseudo labels (i.e., unseen triples with the generated confidences), which are predicted by meta-learning to augment the training data and rebalance the distribution of triple confidences. Experiments on two UKG datasets demonstrate that ssCDL consistently outperforms state-of-the-art baselines in different evaluation metrics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

UKG完成 ssCDL 置信度分布学习 半监督学习 知识图谱
相关文章