cs.AI updates on arXiv.org 10月21日 12:09
ISGFAN:噪声环境下的跨域故障诊断新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ISGFAN的鲁棒跨域故障诊断网络,用于解决工业环境中噪声干扰和领域转移问题。通过信息分离架构和全局焦点对抗方案,ISGFAN在公共数据集上表现优于现有方法。

arXiv:2510.16033v1 Announce Type: new Abstract: Existing transfer fault diagnosis methods typically assume either clean data or sufficient domain similarity, which limits their effectiveness in industrial environments where severe noise interference and domain shifts coexist. To address this challenge, we propose an information separation global-focal adversarial network (ISGFAN), a robust framework for cross-domain fault diagnosis under noise conditions. ISGFAN is built on an information separation architecture that integrates adversarial learning with an improved orthogonal loss to decouple domain-invariant fault representation, thereby isolating noise interference and domain-specific characteristics. To further strengthen transfer robustness, ISGFAN employs a global-focal domain-adversarial scheme that constrains both the conditional and marginal distributions of the model. Specifically, the focal domain-adversarial component mitigates category-specific transfer obstacles caused by noise in unsupervised scenarios, while the global domain classifier ensures alignment of the overall distribution. Experiments conducted on three public benchmark datasets demonstrate that the proposed method outperforms other prominent existing approaches, confirming the superiority of the ISGFAN framework. Data and code are available at https://github.com/JYREN-Source/ISGFAN

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

跨域故障诊断 信息分离架构 对抗网络 噪声环境 领域转移
相关文章