cs.AI updates on arXiv.org 10月21日 12:09
认知负荷轨迹:深度模型可解释性框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出认知负荷轨迹(CLTs)作为深度模型的中层可解释性框架,通过认知负荷理论量化模型内部资源分配。实验表明,CLTs能预测错误发生、揭示认知策略,并引导干预提高推理效率。

arXiv:2510.15980v1 Announce Type: new Abstract: We propose \textbf{Cognitive Load Traces} (CLTs) as a mid-level interpretability framework for deep models, inspired by Cognitive Load Theory in human cognition. CLTs are defined as symbolic, temporally varying functions that quantify model-internal resource allocation. Formally, we represent CLTs as a three-component stochastic process $(\mathrm{IL}_t, \mathrm{EL}_t, \mathrm{GL}_t)$, corresponding to \emph{Intrinsic}, \emph{Extraneous}, and \emph{Germane} load. Each component is instantiated through measurable proxies such as attention entropy, KV-cache miss ratio, representation dispersion, and decoding stability. We propose both symbolic formulations and visualization methods (load curves, simplex diagrams) that enable interpretable analysis of reasoning dynamics. Experiments on reasoning and planning benchmarks show that CLTs predict error-onset, reveal cognitive strategies, and enable load-guided interventions that improve reasoning efficiency by 15-30\% while maintaining accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

认知负荷 深度学习 可解释性 模型效率 认知策略
相关文章