cs.AI updates on arXiv.org 10月20日 12:15
基于EEG数据迁移学习优化ECG/PPG血压监测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了利用EEG数据训练的模型对ECG/PPG数据进行迁移学习,以提高血压监测的准确性,实验结果表明该方法在MIMIC-III和VitalDB数据集上均达到了近最先进水平,且在模型大小压缩方面也取得了显著成果。

arXiv:2502.17460v2 Announce Type: replace-cross Abstract: Blood pressure (BP) is a key indicator of cardiovascular health. As hypertension remains a global cause of morbidity and mortality, accurate, continuous, and non-invasive BP monitoring is therefore of paramount importance. Photoplethysmography (PPG) and electrocardiography (ECG) can potentially enable continuous BP monitoring, yet training accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors. Recently, multiple research groups explored Electroencephalographic (EEG)--based foundation models and demonstrated their exceptional ability to learn rich temporal resolution. Considering the morphological similarities between different biosignals, the question arises of whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type. In this work, we take an initial step towards generalized biosignal foundation models by investigating whether model representations learned from abundant EEG data can effectively be transferred to ECG/PPG data solely with fine-tuning, without the need for large-scale additional pre-training, for the BP estimation task. Evaluations on the MIMIC-III and VitalDB datasets demonstrate that our approach achieves near state-of-the-art accuracy for diastolic BP (mean absolute error of 1.57 mmHg) and surpasses by 1.5x the accuracy of prior works for systolic BP (mean absolute error 2.72 mmHg). Additionally, we perform dynamic INT8 quantization, reducing the smallest model size by over 3.5x (from 13.73 MB down to 3.83 MB) while preserving performance, thereby enabling unobtrusive, real-time BP monitoring on resource-constrained wearable devices.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EEG数据迁移学习 血压监测 ECG/PPG 模型压缩
相关文章