cs.AI updates on arXiv.org 10月20日 12:14
新方法优化分子合成反应预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种基于Transformer的模板自由分子合成反应预测方法,通过整合3D构象数据和空间信息,显著提高了反应预测的准确性。

arXiv:2501.12434v2 Announce Type: replace-cross Abstract: Retrosynthesis plays a crucial role in the fields of organic synthesis and drug development, where the goal is to identify suitable reactants that can yield a target product molecule. Although existing methods have achieved notable success, they typically overlook the 3D conformational details and internal spatial organization of molecules. This oversight makes it challenging to predict reactants that conform to genuine chemical principles, particularly when dealing with complex molecular structures, such as polycyclic and heteroaromatic compounds. In response to this challenge, we introduce a novel transformer-based, template-free approach that incorporates 3D conformer data and spatial information. Our approach includes an Atom-align Fusion module that integrates 3D positional data at the input stage, ensuring correct alignment between atom tokens and their respective 3D coordinates. Additionally, we propose a Distance-weighted Attention mechanism that refines the self-attention process, constricting the model s focus to relevant atom pairs in 3D space. Extensive experiments on the USPTO-50K dataset demonstrate that our model outperforms previous template-free methods, setting a new benchmark for the field. A case study further highlights our method s ability to predict reasonable and accurate reactants.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

分子合成 反应预测 Transformer 3D构象数据 空间信息
相关文章