cs.AI updates on arXiv.org 10月20日 12:14
ParallaxRAG:知识图谱增强的推理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ParallaxRAG,一种基于知识图谱的检索增强生成框架,通过多视图空间对称解耦查询和图三元组,实现强检索架构,提高语言模型在多跳推理上的表现。

arXiv:2510.15552v1 Announce Type: cross Abstract: Large language models (LLMs) excel at language understanding but often hallucinate and struggle with multi-hop reasoning. Knowledge-graph-based retrieval-augmented generation (KG-RAG) offers grounding, yet most methods rely on flat embeddings and noisy path exploration. We propose ParallaxRAG, a framework that symmetrically decouples queries and graph triples into multi-view spaces, enabling a robust retrieval architecture that explicitly enforces head diversity while constraining weakly related paths. Central to our approach is the observation that different attention heads specialize in semantic relations at distinct reasoning stages, contributing to different hops of the reasoning chain. This specialization allows ParallaxRAG to construct cleaner subgraphs and guide LLMs through grounded, step-wise reasoning. Experiments on WebQSP and CWQ, under our unified, reproducible setup (BGE-M3 + Llama3.1-8B), demonstrate competitive retrieval and QA performance, alongside reduced hallucination and good generalization. Our results highlight multi-view head specialization as a principled direction for knowledge-grounded multi-hop reasoning. Our implementation will be released as soon as the paper is accepted.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识图谱 语言模型 多跳推理
相关文章