cs.AI updates on arXiv.org 10月20日 12:11
MLLMs安全漏洞与叙事破解法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用连续漫画式视觉叙事绕过最先进MLLMs安全对齐的方法,通过实验验证其攻击成功率高达83.5%,并分析多模态安全机制的关键漏洞。

arXiv:2510.15068v1 Announce Type: cross Abstract: Multimodal large language models (MLLMs) exhibit remarkable capabilities but remain susceptible to jailbreak attacks exploiting cross-modal vulnerabilities. In this work, we introduce a novel method that leverages sequential comic-style visual narratives to circumvent safety alignments in state-of-the-art MLLMs. Our method decomposes malicious queries into visually innocuous storytelling elements using an auxiliary LLM, generates corresponding image sequences through diffusion models, and exploits the models' reliance on narrative coherence to elicit harmful outputs. Extensive experiments on harmful textual queries from established safety benchmarks show that our approach achieves an average attack success rate of 83.5\%, surpassing prior state-of-the-art by 46\%. Compared with existing visual jailbreak methods, our sequential narrative strategy demonstrates superior effectiveness across diverse categories of harmful content. We further analyze attack patterns, uncover key vulnerability factors in multimodal safety mechanisms, and evaluate the limitations of current defense strategies against narrative-driven attacks, revealing significant gaps in existing protections.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MLLMs 安全漏洞 叙事破解 多模态安全
相关文章