cs.AI updates on arXiv.org 前天 12:11
风机制造可靠性深度学习框架研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的风机制造故障检测框架,通过集成VAE、LSTM和Transformer模型,对SCADA数据进行无监督异常检测,实现早期故障预测,提高风机制造的可靠性。

arXiv:2510.15010v1 Announce Type: cross Abstract: Wind turbine reliability is critical to the growing renewable energy sector, where early fault detection significantly reduces downtime and maintenance costs. This paper introduces a novel ensemble-based deep learning framework for unsupervised anomaly detection in wind turbines. The method integrates Variational Autoencoders (VAE), LSTM Autoencoders, and Transformer architectures, each capturing different temporal and contextual patterns from high-dimensional SCADA data. A unique feature engineering pipeline extracts temporal, statistical, and frequency-domain indicators, which are then processed by the deep models. Ensemble scoring combines model predictions, followed by adaptive thresholding to detect operational anomalies without requiring labeled fault data. Evaluated on the CARE dataset containing 89 years of real-world turbine data across three wind farms, the proposed method achieves an AUC-ROC of 0.947 and early fault detection up to 48 hours prior to failure. This approach offers significant societal value by enabling predictive maintenance, reducing turbine failures, and enhancing operational efficiency in large-scale wind energy deployments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

风机制造 深度学习 故障检测 SCADA数据 可靠性
相关文章