cs.AI updates on arXiv.org 10月20日 12:11
新型多标签基准提升LLM毒性检测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出三种新型多标签基准Q-A-MLL、R-A-MLL、H-X-MLL,用于LLM毒性检测,通过伪标签训练方法显著提高检测准确性。

arXiv:2510.15007v1 Announce Type: cross Abstract: Large language models (LLMs) have achieved impressive results across a range of natural language processing tasks, but their potential to generate harmful content has raised serious safety concerns. Current toxicity detectors primarily rely on single-label benchmarks, which cannot adequately capture the inherently ambiguous and multi-dimensional nature of real-world toxic prompts. This limitation results in biased evaluations, including missed toxic detections and false positives, undermining the reliability of existing detectors. Additionally, gathering comprehensive multi-label annotations across fine-grained toxicity categories is prohibitively costly, further hindering effective evaluation and development. To tackle these issues, we introduce three novel multi-label benchmarks for toxicity detection: \textbf{Q-A-MLL}, \textbf{R-A-MLL}, and \textbf{H-X-MLL}, derived from public toxicity datasets and annotated according to a detailed 15-category taxonomy. We further provide a theoretical proof that, on our released datasets, training with pseudo-labels yields better performance than directly learning from single-label supervision. In addition, we develop a pseudo-label-based toxicity detection method. Extensive experimental results show that our approach significantly surpasses advanced baselines, including GPT-4o and DeepSeek, thus enabling more accurate and reliable evaluation of multi-label toxicity in LLM-generated content.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 毒性检测 多标签基准 伪标签
相关文章