cs.AI updates on arXiv.org 10月20日 12:09
AI可解释性提升用户信任研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过定量实验设计,研究AI系统可解释性与用户信任之间的关系,发现交互性和解释的清晰度与相关性是影响信任的关键因素。

arXiv:2510.15769v1 Announce Type: new Abstract: Large-scale AI models such as GPT-4 have accelerated the deployment of artificial intelligence across critical domains including law, healthcare, and finance, raising urgent questions about trust and transparency. This study investigates the relationship between explainability and user trust in AI systems through a quantitative experimental design. Using an interactive, web-based loan approval simulation, we compare how different types of explanations, ranging from basic feature importance to interactive counterfactuals influence perceived trust. Results suggest that interactivity enhances both user engagement and confidence, and that the clarity and relevance of explanations are key determinants of trust. These findings contribute empirical evidence to the growing field of human-centered explainable AI, highlighting measurable effects of explainability design on user perception

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI可解释性 用户信任 交互性 信任提升 实验研究
相关文章