cs.AI updates on arXiv.org 10月20日 12:08
AUGUSTUS:基于人类记忆的多模态智能体系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为AUGUSTUS的多模态智能体系统,该系统模拟人类记忆的多模态特性,通过编码、存储、检索和行动四个阶段循环工作,实现高效的概念驱动检索。系统在图像分类和MSC基准测试中表现出色。

arXiv:2510.15261v1 Announce Type: new Abstract: Riding on the success of LLMs with retrieval-augmented generation (RAG), there has been a growing interest in augmenting agent systems with external memory databases. However, the existing systems focus on storing text information in their memory, ignoring the importance of multimodal signals. Motivated by the multimodal nature of human memory, we present AUGUSTUS, a multimodal agent system aligned with the ideas of human memory in cognitive science. Technically, our system consists of 4 stages connected in a loop: (i) encode: understanding the inputs; (ii) store in memory: saving important information; (iii) retrieve: searching for relevant context from memory; and (iv) act: perform the task. Unlike existing systems that use vector databases, we propose conceptualizing information into semantic tags and associating the tags with their context to store them in a graph-structured multimodal contextual memory for efficient concept-driven retrieval. Our system outperforms the traditional multimodal RAG approach while being 3.5 times faster for ImageNet classification and outperforming MemGPT on the MSC benchmark.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态智能体 人类记忆 概念驱动检索 图像分类 MSC基准测试
相关文章