machinelearning apple 10月18日 02:23
语音情感数据集构建与标注研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了语音情感数据集构建与标注的重要性,提出了一种基于Switchboard语料库的自然对话语音数据集标注方法,分析了标注过程中的影响因素,并评估了语音情感识别模型在不同情感类别上的性能。

Understanding the nuances of speech emotion dataset curation and labeling is essential for assessing speech emotion recognition (SER) model potential in real-world applications. Most training and evaluation datasets contain acted or pseudo-acted speech (e.g., podcast speech) in which emotion expressions may be exaggerated or otherwise intentionally modified. Furthermore, datasets labeled based on crowd perception often lack transparency regarding the guidelines given to annotators. These factors make it difficult to understand model performance and pinpoint necessary areas for improvement. To address this gap, we identified the Switchboard corpus as a promising source of naturalistic conversational speech, and we trained a crowd to label the dataset for categorical emotions (anger, contempt, disgust, fear, sadness, surprise, happiness, tenderness, calmness, and neutral) and dimensional attributes (activation, valence, and dominance). We refer to this label set as Switchboard-Affect (SWB-Affect). In this work, we present our approach in detail, including the definitions provided to annotators and an analysis of the lexical and paralinguistic cues that may have played a role in their perception. In addition, we evaluate state-of-the-art SER models, and we find variable performance across the emotion categories with especially poor generalization for anger. These findings underscore the importance of evaluation with datasets that capture natural affective variations in speech. We release the labels for SWB-Affect to enable further analysis in this domain.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音情感识别 数据集构建 标注方法 Switchboard语料库 情感识别模型
相关文章