cs.AI updates on arXiv.org 10月17日 12:19
AI辅助生成肾CT报告提升诊断质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于人工智能的肾CT报告生成框架,通过结合结构化特征检测和条件报告生成,提高了报告质量和临床准确性。

arXiv:2506.23584v2 Announce Type: replace-cross Abstract: Objective Renal cancer is a common malignancy and a major cause of cancer-related deaths. Computed tomography (CT) is central to early detection, staging, and treatment planning. However, the growing CT workload increases radiologists' burden and risks incomplete documentation. Automatically generating accurate reports remains challenging because it requires integrating visual interpretation with clinical reasoning. Advances in artificial intelligence (AI), especially large language and vision-language models, offer potential to reduce workload and enhance diagnostic quality. Methods We propose a clinically informed, two-stage framework for automatic renal CT report generation. In Stage 1, a multi-task learning model detects structured clinical features from each 2D image. In Stage 2, a vision-language model generates free-text reports conditioned on the image and the detected features. To evaluate clinical fidelity, generated clinical features are extracted from the reports and compared with expert-annotated ground truth. Results Experiments on an expert-labeled dataset show that incorporating detected features improves both report quality and clinical accuracy. The model achieved an average AUC of 0.75 for key imaging features and a METEOR score of 0.33, demonstrating higher clinical consistency and fewer template-driven errors. Conclusion Linking structured feature detection with conditioned report generation provides a clinically grounded approach to integrate structured prediction and narrative drafting for renal CT reporting. This method enhances interpretability and clinical faithfulness, underscoring the value of domain-relevant evaluation metrics for medical AI development.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 医学影像 肾CT报告
相关文章