cs.AI updates on arXiv.org 10月17日 12:19
LLMs与语言学在NLP中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型在生成流畅文本的能力,并分析了语言学在NLP中的重要性,提出RELIES六要素作为语言学对NLP贡献的概括。

arXiv:2405.05966v5 Announce Type: replace-cross Abstract: Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym RELIES that encapsulates six major facets where linguistics contributes to NLP: Resources, Evaluation, Low-resource settings, Interpretability, Explanation, and the Study of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-`a-vis systems of human language.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 语言学 NLP RELIES 机器学习
相关文章