cs.AI updates on arXiv.org 10月17日 12:18
DEXTER:数据无关的视觉分类器解释框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为DEXTER的数据无关框架,通过扩散模型和大型语言模型生成视觉分类器的全局文本解释。DEXTER能够实现无需训练数据或真实标签的自然语言解释,并在三个任务中展现了其揭示视觉分类器内部机制的能力。

arXiv:2510.14741v1 Announce Type: cross Abstract: Understanding and explaining the behavior of machine learning models is essential for building transparent and trustworthy AI systems. We introduce DEXTER, a data-free framework that employs diffusion models and large language models to generate global, textual explanations of visual classifiers. DEXTER operates by optimizing text prompts to synthesize class-conditional images that strongly activate a target classifier. These synthetic samples are then used to elicit detailed natural language reports that describe class-specific decision patterns and biases. Unlike prior work, DEXTER enables natural language explanation about a classifier's decision process without access to training data or ground-truth labels. We demonstrate DEXTER's flexibility across three tasks-activation maximization, slice discovery and debiasing, and bias explanation-each illustrating its ability to uncover the internal mechanisms of visual classifiers. Quantitative and qualitative evaluations, including a user study, show that DEXTER produces accurate, interpretable outputs. Experiments on ImageNet, Waterbirds, CelebA, and FairFaces confirm that DEXTER outperforms existing approaches in global model explanation and class-level bias reporting. Code is available at https://github.com/perceivelab/dexter.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DEXTER 视觉分类器 数据无关 解释框架 机器学习
相关文章