cs.AI updates on arXiv.org 10月17日 12:18
视频镜头运动分类模型在历史影像中的应用评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统评估了深度学习视频镜头运动分类模型在历史影像中的应用,分析了不同模型设计及标签定义的差异,并通过实验验证了在历史影像数据集上模型的有效性,为未来研究提供了参考。

arXiv:2510.14713v1 Announce Type: cross Abstract: Camera movement conveys spatial and narrative information essential for understanding video content. While recent camera movement classification (CMC) methods perform well on modern datasets, their generalization to historical footage remains unexplored. This paper presents the first systematic evaluation of deep video CMC models on archival film material. We summarize representative methods and datasets, highlighting differences in model design and label definitions. Five standard video classification models are assessed on the HISTORIAN dataset, which includes expert-annotated World War II footage. The best-performing model, Video Swin Transformer, achieves 80.25% accuracy, showing strong convergence despite limited training data. Our findings highlight the challenges and potential of adapting existing models to low-quality video and motivate future work combining diverse input modalities and temporal architectures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

镜头运动分类 深度学习 历史影像 视频分析 模型评估
相关文章