cs.AI updates on arXiv.org 10月17日 12:18
即时目标诱导:提升大型语言模型响应性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种通过观察用户行为自动诱导即时目标的方法,以优化大型语言模型的响应性和生成质量。实验表明,该方法能显著提高LLM输出在特定任务上的胜率,并生成符合用户需求的工具。

arXiv:2510.14591v1 Announce Type: cross Abstract: Large language models promise a broad set of functions, but when not given a specific objective, they default to milquetoast results such as drafting emails littered with cliches. We demonstrate that inferring the user's in-the-moment objective, then rapidly optimizing for that singular objective, enables LLMs to produce tools, interfaces, and responses that are more responsive and desired. We contribute an architecture for automatically inducing just-in-time objectives by passively observing user behavior, then steering downstream AI systems through generation and evaluation against this objective. Inducing just-in-time objectives (e.g., "Clarify the abstract's research contribution") enables automatic generation of tools, e.g., those that critique a draft based on relevant HCI methodologies, anticipate related researchers' reactions, or surface ambiguous terminology. In a series of experiments (N=14, N=205) on participants' own tasks, JIT objectives enable LLM outputs that achieve 66-86% win rates over typical LLMs, and in-person use sessions (N=17) confirm that JIT objectives produce specialized tools unique to each participant.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 即时目标诱导 用户行为 生成质量
相关文章