cs.AI updates on arXiv.org 10月17日 12:17
SUM-AgriVLN:农业视觉语言导航新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SUM-AgriVLN方法,通过空间理解与记忆模块,提高农业机器人基于视觉语言导航的定位准确性和成功率。

arXiv:2510.14357v1 Announce Type: cross Abstract: Agricultural robots are emerging as powerful assistants across a wide range of agricultural tasks, nevertheless, still heavily rely on manual operation or fixed rail systems for movement. The AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling robots to navigate to the target positions following the natural language instructions. In practical agricultural scenarios, navigation instructions often repeatedly occur, yet AgriVLN treat each instruction as an independent episode, overlooking the potential of past experiences to provide spatial context for subsequent ones. To bridge this gap, we propose the method of Spatial Understanding Memory for Agricultural Vision-and-Language Navigation (SUM-AgriVLN), in which the SUM module employs spatial understanding and save spatial memory through 3D reconstruction and representation. When evaluated on the A2A benchmark, our SUM-AgriVLN effectively improves Success Rate from 0.47 to 0.54 with slight sacrifice on Navigation Error from 2.91m to 2.93m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/SUM-AgriVLN.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

农业机器人 视觉语言导航 SUM-AgriVLN 空间记忆 导航准确率
相关文章