cs.AI updates on arXiv.org 10月17日 12:14
DCE-MRI预测HER2状态:深度学习新进展
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于深度学习预测乳腺癌HER2状态的DCE-MRI技术,提出了一种新的预处理和模型训练方法,在多中心数据集上取得了较高的准确性和泛化能力。

arXiv:2510.13897v1 Announce Type: cross Abstract: Breast cancer is the most diagnosed cancer in women, with HER2 status critically guiding treatment decisions. Noninvasive prediction of HER2 status from dynamic contrast-enhanced MRI (DCE-MRI) could streamline diagnostics and reduce reliance on biopsy. However, preprocessing high-dynamic-range DCE-MRI into standardized 8-bit RGB format for pretrained neural networks is nontrivial, and normalization strategy significantly affects model performance. We benchmarked intensity normalization strategies using a Triple-Head Dual-Attention ResNet that processes RGB-fused temporal sequences from three DCE phases. Trained on a multicenter cohort (n=1,149) from the I-SPY trials and externally validated on BreastDCEDL_AMBL (n=43 lesions), our model outperformed transformer-based architectures, achieving 0.75 accuracy and 0.74 AUC on I-SPY test data. N4 bias field correction slightly degraded performance. Without fine-tuning, external validation yielded 0.66 AUC, demonstrating cross-institutional generalizability. These findings highlight the effectiveness of dual-attention mechanisms in capturing transferable spatiotemporal features for HER2 stratification, advancing reproducible deep learning biomarkers in breast cancer imaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

乳腺癌 HER2状态 深度学习 DCE-MRI 图像处理
相关文章