cs.AI updates on arXiv.org 10月17日 12:14
LLM破解技术及其防御策略研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对大型语言模型(LLM)破解技术的综合防御策略。通过构建破解策略分类体系,分析攻击类型及其成功率,并评估了分类指导下的自动检测效果。

arXiv:2510.13893v1 Announce Type: cross Abstract: Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than the jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcome of our experiments are manifold. First, we developed a comprehensive hierarchical taxonomy of 50 jailbreak strategies, consolidating and extending prior classifications into seven broad families, including impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmark a popular LLM for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 破解技术 防御策略 分类体系 自动检测
相关文章