cs.AI updates on arXiv.org 10月16日 12:31
MULTI:评估多模态大语言模型的基准数据集
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MULTI,一个基于真实考试题目的中文多模态数据集,用于评估模型在图像-文本理解、复杂推理和知识回忆等方面的能力,并通过引入精英版和扩展版进一步测试模型。

arXiv:2402.03173v4 Announce Type: replace-cross Abstract: The rapid development of multimodal large language models (MLLMs) raises the question of how they compare to human performance. While existing datasets often feature synthetic or overly simplistic tasks, some models have already surpassed human expert baselines. In this paper, we present MULTI, a Chinese multimodal dataset derived from authentic examination questions. Comprising over 18,000 carefully selected and refined questions, MULTI evaluates models using real-world examination standards, encompassing image-text comprehension, complex reasoning, and knowledge recall. Additionally, We also introduce MULTI-Elite, a 500-question selected hard subset, and MULTI-Extend with more than 4,500 external knowledge context pieces for testing in-context learning capabilities. Our evaluation highlights substantial room for MLLM advancement, with Qwen2-VL-72B achieving a 76.9% accuracy on MULTI and 53.1% on MULTI-Elite leading 25 evaluated models, compared to human expert baselines of 86.1% and 73.1%. MULTI serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态大语言模型 评估数据集 图像-文本理解 复杂推理
相关文章