cs.AI updates on arXiv.org 10月16日 12:29
LogViG:基于对数可扩展图构建的视觉图神经网络
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新的视觉图神经网络LogViG,通过限制长距离链接数量优化图构建方法,并在图像分类和语义分割任务中展现出优于现有视觉图神经网络、CNN和ViT架构的性能。

arXiv:2510.13740v1 Announce Type: cross Abstract: Vision graph neural networks (ViG) have demonstrated promise in vision tasks as a competitive alternative to conventional convolutional neural nets (CNN) and transformers (ViTs); however, common graph construction methods, such as k-nearest neighbor (KNN), can be expensive on larger images. While methods such as Sparse Vision Graph Attention (SVGA) have shown promise, SVGA's fixed step scale can lead to over-squashing and missing multiple connections to gain the same information that could be gained from a long-range link. Through this observation, we propose a new graph construction method, Logarithmic Scalable Graph Construction (LSGC) to enhance performance by limiting the number of long-range links. To this end, we propose LogViG, a novel hybrid CNN-GNN model that utilizes LSGC. Furthermore, inspired by the successes of multi-scale and high-resolution architectures, we introduce and apply a high-resolution branch and fuse features between our high-resolution and low-resolution branches for a multi-scale high-resolution Vision GNN network. Extensive experiments show that LogViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification and semantic segmentation tasks. Our smallest model, Ti-LogViG, achieves an average top-1 accuracy on ImageNet-1K of 79.9% with a standard deviation of 0.2%, 1.7% higher average accuracy than Vision GNN with a 24.3% reduction in parameters and 35.3% reduction in GMACs. Our work shows that leveraging long-range links in graph construction for ViGs through our proposed LSGC can exceed the performance of current state-of-the-art ViGs. Code is available at https://github.com/mmunir127/LogViG-Official.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉图神经网络 Logarithmic Scalable Graph Construction 图像分类 语义分割
相关文章