cs.AI updates on arXiv.org 10月16日
资源与AI基础模型研究进展
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了计算资源与基础模型科学进步的关系,通过分析2022至2024年间6517篇FM论文和229位作者的调查,发现计算资源与国家资金分配和引用量相关,但与研究环境、领域或研究方法无明显关联。建议关注共享、低成本计算机会,降低资源不足研究者的门槛,以促进AI创新。

arXiv:2510.13621v1 Announce Type: cross Abstract: Cutting-edge research in Artificial Intelligence (AI) requires considerable resources, including Graphics Processing Units (GPUs), data, and human resources. In this paper, we evaluate of the relationship between these resources and the scientific advancement of foundation models (FM). We reviewed 6517 FM papers published between 2022 to 2024, and surveyed 229 first-authors to the impact of computing resources on scientific output. We find that increased computing is correlated with national funding allocations and citations, but our findings don't observe the strong correlations with research environment (academic or industrial), domain, or study methodology. We advise that individuals and institutions focus on creating shared and affordable computing opportunities to lower the entry barrier for under-resourced researchers. These steps can help expand participation in FM research, foster diversity of ideas and contributors, and sustain innovation and progress in AI. The data will be available at: https://mit-calc.csail.mit.edu/

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI基础模型 计算资源 科学进步 研究环境 创新
相关文章