cs.AI updates on arXiv.org 10月16日 12:27
LiteraryQA:提升叙事文本问答质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LiteraryQA,针对叙事文本问答,通过高质量子集和评估方法优化,提高问答系统在文学作品领域的可靠性。

arXiv:2510.13494v1 Announce Type: cross Abstract: Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA. This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans. Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/SapienzaNLP/LiteraryQA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

叙事文本问答 LiteraryQA 文学作品 评估方法
相关文章