cs.AI updates on arXiv.org 10月16日 12:26
LLM助力S2ST,提升语音翻译的强调效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于LLM的应力感知语音到语音翻译系统,通过跨语言强调转换保留词级强调,并通过自动生成训练数据和“LLM作为裁判”进行评估,实验结果表明该方法在保留强调的同时,保持了可接受的翻译质量、说话人意图和自然度。

arXiv:2510.13194v1 Announce Type: cross Abstract: We propose a stress-aware speech-to-speech translation (S2ST) system that preserves word-level emphasis by leveraging LLMs for cross-lingual emphasis conversion. Our method translates source-language stress into target-language tags that guide a controllable TTS model. To overcome data scarcity, we developed a pipeline to automatically generate aligned training data and introduce the "LLM-as-Judge" for evaluation. Experiments show our approach substantially outperforms baselines in preserving emphasis while maintaining comparable translation quality, speaker intent, and naturalness. Our work highlights the importance of prosody in translation and provides an effective, data-efficient solution for preserving paralinguistic cues in S2ST.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音翻译 LLM S2ST 强调转换 数据效率
相关文章