cs.AI updates on arXiv.org 10月16日 12:26
FINDER:提升LLMs金融数值推理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为FINDER的两步框架,旨在提升大型语言模型在金融数值推理方面的能力。该框架通过生成式检索器提取数据中的相关事实,并使用动态选择上下文示例的程序式思维提示。实验结果表明,FINDER在FinQA和ConvFinQA数据集上均达到新的最优性能。

arXiv:2510.13157v1 Announce Type: cross Abstract: Despite continuous advancements in the capabilities of large language models (LLMs), numerical reasoning remains a challenging area. Techniques like chain-of-thought prompting, tree-of-thought prompting, and program-of-thought prompting guide LLMs through intermediate reasoning steps. Although in-context learning with few-shot prompting has improved performance, LLMs still lag behind state-of-the-art models on financial numerical reasoning datasets such as FinQA and ConvFinQA. In this work, we introduce FINDER, a novel two-step framework, to enhance LLMs' capabilities in financial numerical reasoning. The first step utilizes a generative retriever to extract relevant facts from unstructured data, including both text and tables. This is followed by context-aware Program of Thought prompting with dynamic selection of in-context examples. Our model FINDER achieves a new state-of-the-art performance on both the FinQA and ConvFinQA datasets, surpassing previous benchmarks with execution accuracy improvements of 5.98% and 4.05%, respectively.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 数值推理 金融数据
相关文章