cs.AI updates on arXiv.org 10月16日 12:25
LLM不确定性量化:因果视角与灰盒方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从因果视角建立LLM不确定性与语义保干预下的不变性之间的联系,提出一种新型灰盒不确定性量化方法,通过理论证明和实验验证,该方法在多种LLM和QA数据集上表现出有效性和计算效率。

arXiv:2510.13103v1 Announce Type: cross Abstract: Uncertainty Quantification (UQ) is a promising approach to improve model reliability, yet quantifying the uncertainty of Large Language Models (LLMs) is non-trivial. In this work, we establish a connection between the uncertainty of LLMs and their invariance under semantic-preserving intervention from a causal perspective. Building on this foundation, we propose a novel grey-box uncertainty quantification method that measures the variation in model outputs before and after the semantic-preserving intervention. Through theoretical justification, we show that our method provides an effective estimate of epistemic uncertainty. Our extensive experiments, conducted across various LLMs and a variety of question-answering (QA) datasets, demonstrate that our method excels not only in terms of effectiveness but also in computational efficiency.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

不确定性量化 LLM 因果视角 灰盒方法 QA数据集
相关文章