cs.AI updates on arXiv.org 10月16日 12:24
CurlL数据集:基于人类发展轨迹的持续学习基准
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一个基于5-10岁儿童发展轨迹的持续学习数据集和基准CurlL,通过技能图和合成数据集,评估模型在技能获取上的连续学习能力。

arXiv:2510.13008v1 Announce Type: cross Abstract: We introduce a comprehensive continual learning dataset and benchmark (CurlL) grounded in human developmental trajectories from ages 5-10, enabling systematic and fine-grained assessment of models' ability to progressively acquire new skills. CurlL spans five developmental stages (0-4) covering ages 5-10, supported by a skill graph that breaks down broad skills into smaller abilities, concrete goals, and measurable indicators, while also capturing which abilities build on others. We generate a 23.4B-token synthetic dataset with controlled skill progression, vocabulary complexity, and format diversity, comprising paragraphs, comprehension-based QA (CQA), skill-testing QA (CSQA), and instruction-response (IR) pairs. Stage-wise token counts range from 2.12B to 6.78B tokens, supporting precise analysis of forgetting, forward transfer, and backward transfer. Using a 135M-parameter transformer trained under independent, joint, and sequential (continual) setups, we show trade-offs in skill retention and transfer efficiency. By mirroring human learning patterns and providing fine-grained control over skill dependencies, this work advances continual learning evaluations for language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

持续学习 数据集 基准 技能获取 儿童发展
相关文章