cs.AI updates on arXiv.org 10月16日 12:21
LLM互补系统提升复杂任务性能
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合小型与大型LLM的互补系统,通过小型LLM先提供初始答案,大型LLM验证并深化推理,有效降低大型LLM的计算成本,同时保持复杂任务上的稳健性能。

arXiv:2510.13214v1 Announce Type: new Abstract: Recent advances in Large Language Models (LLMs) demonstrate that chain-of-thought prompting and deep reasoning substantially enhance performance on complex tasks, and multi-agent systems can further improve accuracy by enabling model debates. However, applying deep reasoning to all problems is computationally expensive. To mitigate these costs, we propose a complementary agent system integrating small and large LLMs. The small LLM first generates an initial answer, which is then verified by the large LLM. If correct, the answer is adopted directly; otherwise, the large LLM performs in-depth reasoning. Experimental results show that, for simple problems, our approach reduces the computational cost of the large LLM by more than 50% with negligible accuracy loss, while consistently maintaining robust performance on complex tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 复杂任务 互补系统 深度推理 计算成本
相关文章