machinelearning apple 10月16日 06:57
Agentic RAG系统助力软件测试自动化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Agentic Retrieval-Augmented Generation (RAG)系统的软件测试自动化方法,通过结合自主AI代理和混合向量图知识系统,实现测试计划、用例和QE指标生成,显著提高测试准确性,缩短测试周期,降低成本。

We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for Quality Engineering (QE) artifact creation. We combine autonomous AI agents with hybrid vector-graph knowledge systems to automate test plan, case, and QE metric generation. Our approach addresses traditional software testing limitations by leveraging LLMs such as Gemini and Mistral, multi-agent orchestration, and enhanced contextualization. The system achieves remarkable accuracy improvements from 65% to 94.8% while ensuring comprehensive document traceability throughout the quality engineering lifecycle. Experimental validation of enterprise Corporate Systems Engineering and SAP migration projects demonstrates an 85% reduction in testing timeline, an 85% improvement in test suite efficiency, and projected 35% cost savings, resulting in a 2-month acceleration of go-live.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软件测试 自动化 Agentic RAG QE指标 成本降低
相关文章