cs.AI updates on arXiv.org 10月15日 13:13
自监督学习优化方法研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从优化和动力系统两个角度,探讨了自监督学习中避免表示崩溃的常用方法:停止梯度与指数移动平均迭代过程。研究发现,这些方法在避免表示崩溃方面有效,并在实际下游应用中表现出色。

arXiv:2507.01028v2 Announce Type: replace-cross Abstract: The {\em stop gradient} and {\em exponential moving average} iterative procedures are commonly used in non-contrastive approaches to self-supervised learning to avoid representation collapse, with excellent performance in downstream applications in practice. This presentation investigates these procedures from the dual viewpoints of optimization and dynamical systems. We show that, in general, although they {\em do not} optimize the original objective, or {\em any} other smooth function, they {\em do} avoid collapse Following~\citet{Tian21}, but without any of the extra assumptions used in their proofs, we then show using a dynamical system perspective that, in the linear case, minimizing the original objective function without the use of a stop gradient or exponential moving average {\em always} leads to collapse. Conversely, we characterize explicitly the equilibria of the dynamical systems associated with these two procedures in this linear setting as algebraic varieties in their parameter space, and show that they are, in general, {\em asymptotically stable}. Our theoretical findings are illustrated by empirical experiments with real and synthetic data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自监督学习 优化方法 表示崩溃 停止梯度 指数移动平均
相关文章