cs.AI updates on arXiv.org 10月15日 13:12
PAC-Bayesian理论在多视角学习中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文将PAC-Bayesian理论扩展至多视角学习,提出基于Rényi散度的泛化界限,并设计相应的优化算法,以促进理论在多视角学习中的应用。

arXiv:2411.06276v3 Announce Type: replace-cross Abstract: The PAC-Bayesian framework has significantly advanced the understanding of statistical learning, particularly for majority voting methods. Despite its successes, its application to multi-view learning -- a setting with multiple complementary data representations -- remains underexplored. In this work, we extend PAC-Bayesian theory to multi-view learning, introducing novel generalization bounds based on R\'enyi divergence. These bounds provide an alternative to traditional Kullback-Leibler divergence-based counterparts, leveraging the flexibility of R\'enyi divergence. Furthermore, we propose first- and second-order oracle PAC-Bayesian bounds and extend the C-bound to multi-view settings. To bridge theory and practice, we design efficient self-bounding optimization algorithms that align with our theoretical results.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PAC-Bayesian 多视角学习 Rényi散度 泛化界限 优化算法
相关文章