cs.AI updates on arXiv.org 22小时前
OFF-FSP:竞争性游戏下的新型离线多智能体强化学习算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出OFF-FSP算法,针对竞争性游戏中的离线多智能体强化学习挑战,通过模拟对手互动、结合重要性采样和FSP方法,有效识别纳什均衡,并在实际任务中验证了算法的有效性。

arXiv:2403.00841v2 Announce Type: replace-cross Abstract: Offline Reinforcement Learning (RL) enables policy improvement from fixed datasets without online interactions, making it highly suitable for real-world applications lacking efficient simulators. Despite its success in the single-agent setting, offline multi-agent RL remains a challenge, especially in competitive games. Firstly, unaware of the game structure, it is impossible to interact with the opponents and conduct a major learning paradigm, self-play, for competitive games. Secondly, real-world datasets cannot cover all the state and action space in the game, resulting in barriers to identifying Nash equilibrium (NE). To address these issues, this paper introduces OFF-FSP, the first practical model-free offline RL algorithm for competitive games. We start by simulating interactions with various opponents by adjusting the weights of the fixed dataset with importance sampling. This technique allows us to learn the best responses to different opponents and employ the Offline Self-Play learning framework. To overcome the challenge of partial coverage, we combine the single-agent offline RL method with Fictitious Self-Play (FSP) to approximate NE by constraining the approximate best responses away from out-of-distribution actions. Experiments on matrix games, extensive-form poker, and board games demonstrate that OFF-FSP achieves significantly lower exploitability than state-of-the-art baselines. Finally, we validate OFF-FSP on a real-world human-robot competitive task, demonstrating its potential for solving complex, hard-to-simulate real-world problems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

离线强化学习 多智能体 竞争性游戏 纳什均衡 FSP
相关文章