cs.AI updates on arXiv.org 10月15日 13:11
CuMPerLay:深度学习中的拓扑特征层
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CuMPerLay,一种新的可微分向量层,将立方多参数持久性(CMP)整合到深度学习流程中。CuMPerLay通过将CMP分解为可学习的单参数持久性组合,实现其向量化,并确保在Swin Transformers等先进架构中稳定应用。实验表明,CuMPerLay在医学影像和计算机视觉数据集上提升了分类和分割性能。

arXiv:2510.12795v1 Announce Type: cross Abstract: We present CuMPerLay, a novel differentiable vectorization layer that enables the integration of Cubical Multiparameter Persistence (CMP) into deep learning pipelines. While CMP presents a natural and powerful way to topologically work with images, its use is hindered by the complexity of multifiltration structures as well as the vectorization of CMP. In face of these challenges, we introduce a new algorithm for vectorizing MP homologies of cubical complexes. Our CuMPerLay decomposes the CMP into a combination of individual, learnable single-parameter persistence, where the bifiltration functions are jointly learned. Thanks to the differentiability, its robust topological feature vectors can be seamlessly used within state-of-the-art architectures such as Swin Transformers. We establish theoretical guarantees for the stability of our vectorization under generalized Wasserstein metrics. Our experiments on benchmark medical imaging and computer vision datasets show the benefit CuMPerLay on classification and segmentation performance, particularly in limited-data scenarios. Overall, CuMPerLay offers a promising direction for integrating global structural information into deep networks for structured image analysis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CuMPerLay 深度学习 拓扑特征 医学影像 计算机视觉
相关文章