cs.AI updates on arXiv.org 10月15日 13:10
对话自然度评估:DGRC方法及其应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为DGRC的评估语言模型对话自然度的方法,通过将对话分割、生成、重组和比较,以减少语言模型分析的偏差,并实现对话敏感行为的系统测试。

arXiv:2510.12740v1 Announce Type: cross Abstract: Evaluating the naturalness of dialogue in language models (LMs) is not trivial: notions of 'naturalness' vary, and scalable quantitative metrics remain limited. This study leverages the linguistic notion of 'at-issueness' to assess dialogue naturalness and introduces a new method: Divide, Generate, Recombine, and Compare (DGRC). DGRC (i) divides a dialogue as a prompt, (ii) generates continuations for subparts using LMs, (iii) recombines the dialogue and continuations, and (iv) compares the likelihoods of the recombined sequences. This approach mitigates bias in linguistic analyses of LMs and enables systematic testing of discourse-sensitive behavior. Applying DGRC, we find that LMs prefer to continue dialogue on at-issue content, with this effect enhanced in instruct-tuned models. They also reduce their at-issue preference when relevant cues (e.g., "Hey, wait a minute") are present. Although instruct-tuning does not further amplify this modulation, the pattern reflects a hallmark of successful dialogue dynamics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语言模型 对话自然度 DGRC方法 对话敏感行为 自然语言处理
相关文章